Markscheme

November 2016

Mathematical Studies

Standard level

Paper 1

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Paper 1 Markscheme

 Instructions to ExaminersNotes: If in doubt about these instructions or any other marking issues, contact your team leader for clarification.

The number of marks for each question is 6 .

1 Abbreviations

The markscheme may make use of the following abbreviations:
M Marks awarded for Method
A Marks awarded for an Answer or for Accuracy
C Marks awarded for Correct answers (irrespective of working shown)
R Marks awarded for clear Reasoning
ft Marks that can be awarded as follow through from previous results in the question

Method of Marking

(a) All marking must be done in RM Assessor using the mathematical studies annotations and in accordance with the current document for guidance in e-marking Mathematical Studies SL. It is essential that you read this document before you start marking.
(b) If the candidate has full marks on a question use the $\boldsymbol{C 6}$ annotation, if the candidate has made an attempt but scores zero marks use C0. If there is no attempt use the No response button. If a candidate does not score full or zero marks then full annotations MUST be shown.
(c) In this paper, if the correct answer is seen on the answer line the maximum mark is awarded. There is no need to check the working! Award \boldsymbol{C} marks and move on.
(d) If the answer does not appear on the answer line, but the correct answer is seen in the working box with no subsequent working, award the maximum mark.
(e) If the answer is wrong, marks should be awarded for the working according to the markscheme.
(f) Working crossed out by the candidate should not be awarded any marks. Where candidates have written two solutions to a question, only the first solution should be marked.
(g) A correct answer in the working box transcribed inaccurately to the answer line can receive full marks.
(h) If correct working results in a correct answer in the working box but then further working is developed, indicating a lack of mathematical understanding full marks should not be awarded. In most such cases it will be a single final answer mark that is lost, however, a statement on the answer line should always be taken as the candidate's final decision on the answer as long as it is unambiguous. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal.

Example:

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$	$5.65685 \ldots$ (incorrect decimal value)	Award the final (A1) (ignore the further working)
2.	$(x-6)(x+1)$	$x=6$ and -1	Do not award the final (A1) (see next example)

Example: Factorise $x^{2}-5 x-6$

Markscheme	Candidates' Scripts	Marking
$(x-6)(x+1) \quad(A 1)(A 1)$	(i) Answer line: $(x+6)(x+1)$ (ii) Working box: $(x-6)(x+1)$ followed by $x=6$ and -1 , or just $6,-1$ in either working box or on answer line.	$(A 0)(A 1)$ (A1) (AO)

3 Follow through (ft) Marks

Errors made at any step of a solution affect all working that follows. To limit the severity of the penalty, follow through (ft) marks can be awarded. Markschemes will indicate where it is appropriate to apply follow through in a question with '(ft)'.
(a) Follow through applies only from one part of a question to a subsequent part of the question. Follow through does not apply within the same part.
(b) If an answer resulting from follow through is extremely unrealistic (eg, negative distances or incorrect by large order of magnitude) then the final \boldsymbol{A} mark should not be awarded.
(c) If a question is transformed by an error into a different, much simpler question then follow through may not apply.
(d) To award follow through marks for a question part, there must be working present for that part. An isolated follow through answer, without working is regarded as incorrect and receives no marks even if it is approximately correct.
(e) The exception to the above would be in a question which is testing the candidate's use of the GDC, where working will not be expected. The markscheme will clearly indicate where this applies.
(f) Inadvertent use of radians will be penalised the first time it occurs. The markscheme will give clear instructions to ensure that only one mark per paper can be lost for the use of radians.

Example: Finding angles and lengths using trigonometry

Using the Markscheme

(a) \boldsymbol{A} marks are dependent on the preceding \boldsymbol{M} mark being awarded, it is not possible to award (MO)(A1). Once an (M0) has been awarded, all subsequent \boldsymbol{A} marks are lost in that part of the question, even if calculations are performed correctly, until the next \boldsymbol{M} mark.
The only exception will be for an answer where the accuracy is specified in the question - see section 5.
(b) \boldsymbol{A} marks are dependent on the \boldsymbol{R} mark being awarded, it is not possible to award (A1)(R0). Hence the (A1) is not awarded for a correct answer if no reason or the wrong reason is given.
(c) Alternative methods may not always be included. Thus, if an answer is wrong then the working must be carefully analysed in order that marks are awarded for a different method consistent with the markscheme.
Where alternative methods for complete questions are included in the markscheme, they are indicated by 'OR' etc.
(d) Unless the question specifies otherwise, accept equivalent forms. For example: $\frac{\sin \theta}{\cos \theta}$ for $\tan \theta$. On the markscheme, these equivalent numerical or algebraic forms will sometimes be written in brackets after the required answer.
Where numerical answers are required as the final answer to a part of a question in the markscheme, the scheme will show, in order:
the 3 significant figure answer worked through from full calculator display;
the exact value (for example $\frac{2}{3}$ if applicable) ;
the full calculator display in the form 2.83163... as in the example above.
Where answers are given to 3 significant figures and are then used in subsequent parts of the question leading to a different 3 significant figure answer, these solutions will also be given.
(e) As this is an international examination, all valid alternative forms of notation should be accepted. Some examples of these are:

Decimal points: $1.7 ; 1{ }^{\prime} 7 ; 1 \cdot 7 ; 1,7$.
Decimal numbers less than 1 may be written with or without a leading zero: 0.49 or .49 .
Different descriptions of an interval: $3<x<5 ;(3,5) ;$] 3, 5 [.
Different forms of notation for set properties (e.g. complement): $A^{\prime} ; \bar{A} ; A^{c} ; U-A ;(A ; U \backslash A$.
Different forms of logic notation: $\neg p ; p^{\prime} ; \tilde{p} ; \bar{p} ; \sim p$.

$$
p \Rightarrow q ; p \rightarrow q ; q \Leftarrow p
$$

Significance level may be written as α.
(f) Discretionary marks: There will be very rare occasions where the markscheme does not cover the work seen. In such cases the annotation DM should be used to indicate where an examiner has used discretion. Discretion should be used sparingly and if there is doubt an exception should be raised through RM Assessor to the team leader.

As with previous sessions there will be no whole paper penalty marks for accuracy AP, financial accuracy FP and units UP. Instead these skills will be assessed in particular questions and the marks applied according to the rules given in sections 5, 6 and 7 below.

5 Accuracy of Answers

Incorrect accuracy should be penalized once only in each question according to the rules below.
Unless otherwise stated in the question, all numerical answers should be given exactly or correct to 3 significant figures.

1. If the candidate's answer is seen to 4 sf or greater and would round to the required 3 sf answer, then award (A1) and ignore subsequent rounding.
Note: The unrounded answer may appear in either the working box or on the final answer line.
2. If the candidate's unrounded answer is not seen then award (A1) if the answer given is correctly rounded to 2 or more significant figures, otherwise (AO).
Note: If the candidate's unrounded answer is not seen and the answer is given correct to 1 sf (correct or not), the answer will be considered wrong and will not count as incorrect accuracy. If this answer is used in subsequent parts, then working must be shown for further marks to be awarded.
3. If a correct 2 sf answer is used in subsequent parts, then working must be shown for further marks to be awarded. (This treatment is the same as for following through from an incorrect answer.)

These 3 points (see numbers in superscript) have been summarized in the table below and illustrated in the examples which follow.

	If candidates final answer is given ...					
	Exact or to 4 or more sf (and would round to the correct 3 sf)	Correct to 3 sf	Incorrect to 3 sf	Correct to 2 sf 3	Incorrect to 2 sf	Correct or incorrect to 1 sf
Unrounded answer seen ${ }^{1}$	Award the final (A1) irrespective of correct or incorrect rounding					
Unrounded answer not seen ${ }^{2}$	(A1)	(A1)	(AO)	(A1)	(AO)	(AO)
Treatment of subsequent parts	As per MS		Treat as follow through, only if working is seen. ${ }^{3}$			

Examples:

Markscheme		Candidates' Scripts			Marking
7.44 (7.43798...)	(A1)	(i) $7.43798 \ldots$ is seen in the working box followed by 7; 7.4; 7.44; 7.438 etc. (correctly rounded)			(A1)
		(ii)	$7.43798 \ldots$ is seen in the working box followed by 7.437; 7.43 etc. (incorrectly rounded)		(A1)
		(iii)	7.4		(A1)
		(iv)	7		(AO) (correct to 1 sf)
		(v)	7.5		(AO) rounded to 2 sf)
		(vi)	7.43	(incor	(AO) rounded to 3 sf)

Example: ABC is a right angled triangle with angle $\mathrm{ABC}=90^{\circ}, \mathrm{AC}=32 \mathrm{~cm}$ and $\mathrm{AB}=30 \mathrm{~cm}$. Find (a) the length of BC , (b) The area of triangle ABC.

\begin{tabular}{|c|c|c|c|}
\hline Markscheme \& \& Candidates' Scripts \& Marking \\
\hline \begin{tabular}{l}
(a) \(\quad \mathrm{BC}=\sqrt{32^{2}-30^{2}}\) \\
Award (M1) for correct substitution in Pythagoras' formula
\[
=11.1(\sqrt{124}, 11.1355 \ldots)(\mathrm{cm})
\] \\
(A1) \\
(b) Area \(=\frac{1}{2} \times 30 \times 11.1355 \ldots\) \\
(M1) \\
Award (M1) for correct substitution in area of triangle formula
\[
=167(167.032 \ldots)\left(\mathrm{cm}^{2}\right) \quad(\mathrm{A} 1)(\mathrm{ft})
\]
\end{tabular} \& (a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
& \mathrm{BC}=\sqrt{32^{2}-30^{2}} \\
& 11(\mathrm{~cm}) \\
& \text { case (i) } \\
& \text { Area }=\frac{1}{2} \times 30 \times 11 \\
& =165\left(\mathrm{~cm}^{2}\right) \\
& \text { case }(\mathrm{ii}) \\
& =165\left(\mathrm{~cm}^{2}\right)
\end{aligned}
$$

(No wo treated as a

 \&

(M1)

(A1)

n, but correct)

(M1)

working shown)

(A1)(ft)

MO)(AO)(ft)

e answer 11 is

awarded here
\end{tabular}

\hline
\end{tabular}

Rounding of an exact answer to 3 significant figures should be accepted if performed correctly. Exact answers such as $\frac{1}{4}$ can be written as decimals to fewer than 3 significant figures if the result is still exact. Reduction of a fraction to its lowest terms is not essential, however where an answer simplifies to an integer this is expected. Fractions that include a decimal in the numerator and/or the denominator are acceptable for showing correct substitution, but not as a final answer.

Ratios of π and answers taking the form of square roots of integers or any rational power of an integer (e.g. $\sqrt{13}, 2^{\frac{2}{3}}, \sqrt[4]{5}$,) may be accepted as exact answers. All other powers (eg, of non-integers) and values of transcendental functions such as sine and cosine must be evaluated.

If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. In all such cases the final mark is not awarded if the rounding does not follow the instructions given in the question. A mark for specified accuracy can be regarded as a (ft) mark regardless of an immediately preceding (MO).

Certain answers obtained from the GDC are worth 2 marks and working will not be seen. In these cases only one mark should be lost for accuracy.
eg, Chi-squared, correlation coefficient, mean

Markscheme	Candidates' Scripts		Marking	
Chi-squared	(a) 7.7	(A2)		
$7.68(7.67543 \ldots)$	(A2)	(b)	7.67	(A1)
		(c) 7.6	(A1)	
	(d) 8	(A0)		
	(e) 7	(A0)		
	(e) 7.66	(A0)		

Regression line

Markscheme		Candidates' Scripts	Marking
$\begin{aligned} & y=0.888 x+13.5 \\ & (y=0.887686 \ldots x+13.4895 \ldots) \end{aligned}$	(a)	$y=0.89 x+13$	(A2) (both accepted)
If an answer is not in the form of an equation award at most (A1)(A0).	(b)	$y=0.88 x+13$	(A1) (one rounding error)
	(c)	$y=0.88 x+14$	(A1) (rounding error repeated)
	(d)	(i) $y=0.9 x+13$	
		(ii) $y=0.8 x+13$	(A1) (1 sf not accepted)
	(e)	0.88x+14 (two	(AO) rrors and not an equation)

Maximum/minimum/points of intersection

6 Level of accuracy in finance questions

The accuracy level required for answers will be specified in all questions involving money. This will usually be either whole units or two decimal places. The first answer not given to the specified level of accuracy will not be awarded the final \boldsymbol{A} mark. The markscheme will give clear instructions to ensure that only one mark per paper can be lost for incorrect accuracy in a financial question.

Example: A financial question demands accuracy correct to 2 dp .

Units in answers

There will be specific questions for which the units are required and this will be indicated clearly in the markscheme. The first correct answer with no units or incorrect units will not be awarded the final \boldsymbol{A} mark. The markscheme will give clear instructions to ensure that only one or two marks per paper can be lost for lack of units or incorrect units.
The units are considered only when the numerical answer is awarded (A1) under the accuracy rules given in Section 5.

Markscheme		Candidates' Scripts				Marking
(a)	$37000 \mathrm{~m}^{2}$	(A1)	(a) $36000 \mathrm{~m}^{2}$	(Incorrect answer so units not considered)		
(b)	$3200 \mathrm{~m}^{3}$	(A1)	(b) $3200 \mathrm{~m}^{2}$			
(AO)						
(Incorrect units)						

If no method is shown and the answer is correct but with incorrect or missing units award the C marks with a one mark penalty.

8 Graphic Display Calculators

Candidates will often obtain solutions directly from their calculators. They must use mathematical notation, not calculator notation. No method marks can be awarded for incorrect answers supported only by calculator notation. The comment "I used my GDC" cannot receive a method mark.

1. (a) $\frac{\cos 36^{\circ}+\sin 18^{\circ}}{\sqrt{29^{2}-21.8}}$

Note: Award (M1) for correct substitution into formula.

$$
\begin{equation*}
=0.0390625 \tag{A1}
\end{equation*}
$$

Note: Accept $\frac{5}{128}$.
(b) (i) 0.04
(A1)(ft)
(ii) 0.0391
(A1)(ft)
Note: Follow through from part (a).
(c) $3.91 \times 10^{-2} \quad$ (A1)(ft)(A1)(ft)

Note: Answer should be consistent with their answer to part (b)(ii). Award (A1)(ft) for 3.91, and (A1)(ft) for 10^{-2}. Follow through from part (b)(ii).
2. (a) (i) 32.5
(ii) 31.9
(iii) 33.1
(A1)
Note: Answers must be given correct to 1 decimal place.
(b)

Note: Award (A1)(ft) for correct median, (A1)(ft) for correct quartiles and box, (A1) for correct end points of whiskers and straight whiskers.
Award at most (A1)(A1)(A0) if a horizontal line goes right through the box or if the whiskers are not well aligned with the midpoint of the box.
Follow through from part (a).
3. (a)

Statement	True or False
$x \in C$	False
$x \subset B$	False
$A \cup B \neq \varnothing$	True
$A \cap B \subset C$	False
$A \cap C=\varnothing$	True

(A1)(A1)(A1)(A1)(A1)
(C5)
(b)

4. The first answer not given correct to two decimal places is not awarded the final (A1). Incorrect rounding is not penalized thereafter.
(a) 3000×6.3021
(M1)
Note: Award (M1) for multiplying 3000 by 6.3021 .

$$
\begin{equation*}
=18906.30 \tag{A1}
\end{equation*}
$$

(b) $\frac{18906.30-12000}{8.7268}+(2000-1250)$

Note: Award (M1) for subtracting 12000 from their answer to part (a) OR for 6906.30 seen, (M1) for dividing their amount by 8.7268 (can be implied if 791.389... seen) and (M1) for 2000-1250 OR 750 seen.

$$
=1541.39
$$

(A1)(ft)
Note: Follow through from part (a).
5. (a) If Sandi gets up before eight o'clock then Sandi (either) goes for a run or goes for a swim, but not both.
(A1)(A1)(A1)
Note: Award (A1) for If then \qquad (A1) for all propositions in the correct order, (A1) for "... or ... but not both" (do not accept "either" as a replacement for "but not both").
(b)

p	q	r	$(q \vee r)$	$p \Rightarrow(q \vee r)$
T	T	T	\mathbf{F}	\mathbf{F}
T	T	F	\mathbf{T}	\mathbf{T}
T	F	T	\mathbf{T}	\mathbf{T}
T	F	F	\mathbf{F}	\mathbf{F}
F	T	T	\mathbf{F}	\mathbf{T}
F	T	F	\mathbf{T}	\mathbf{T}
F	F	T	\mathbf{T}	\mathbf{T}
F	F	F	\mathbf{F}	\mathbf{T}

(A1)(A1)(ft)
Note: Award (A1) for correct ($q \underline{\vee} r$) column, and (A1) $\mathbf{f t}$) for their correct $p \Rightarrow(q \underline{\vee} r)$ column. Follow through from their $(q \underline{\vee} r)$ column.
(c) tautology
(A1)(ft)
Note: Follow through from part (b).
6. (a) $\frac{100}{1000} \times \frac{330}{1000} \times 1000$ OR $\frac{100 \times 330}{1000}$
$=33$
(A1)
(b) 8.21 ($8.21497 \ldots$)
(A2)
(C2)
(c) H_{0} should be rejected
(A1)(ft)
$7.815<8.21$ OR (the p-value) $0.041771<0.05$
(M1)
En

Note: Follow through from part (b). Do not award (A1)(RO).
Award (A1)(ft) for " H_{0} should be rejected" OR "Becoming infected during a stay in hospital is not independent of (is dependent on OR associated with) the ward". Accept "Do not accept H_{0} " OR "YES". Do not accept "Becoming infected during a stay in hospital is correlated (related OR linked) with the ward."
Award (R1) for comparison of their χ^{2} statistic value from part (b) with the critical value OR a comparison of p-value with 0.05 .
7. Units are required in parts (a) and (b).
(a) $\frac{4}{3} \pi \times 6^{3}$

Note: Award (M1) for correct substitution into volume of sphere formula.

$$
\begin{equation*}
=905 \mathrm{~cm}^{3}\left(288 \pi \mathrm{~cm}^{3}, 904.778 \ldots \mathrm{~cm}^{3}\right) \tag{A1}
\end{equation*}
$$

Note: Answers derived from the use of approximations of π (3.14; 22/7) are awarded (AO).
(b) $\frac{140}{100} \times 904.778 \ldots=\frac{4}{3} \pi r^{3} \quad$ OR $\frac{140}{100} \times 288 \pi=\frac{4}{3} \pi r^{3} \quad$ OR $1266.69 \ldots=\frac{4}{3} \pi r^{3}($ M1) (M1)

Note: Award (M1) for multiplying their part (a) by 1.4 or equivalent, (M1) for equating to the volume of a sphere formula.

$$
r^{3}=\frac{3 \times 1266.69 \ldots}{4 \pi} \text { OR } r=\sqrt[3]{\frac{3 \times 1266.69 \ldots}{4 \pi}} \text { OR } r=\sqrt[3]{(1.4) \times 6^{3}} \quad \text { OR } r^{3}=302.4
$$

Note: Award (M1) for isolating r.

$$
(r=) 6.71 \mathrm{~cm} \quad(6.71213 \ldots)
$$

(A1)(ft)
(C4)
Note: Follow through from part (a).
8. (a) $x+y=154$
(b) $320 x+85 y=14970$
(A1)
(c) $x=8, y=146$
(A1)(ft)(A1)(ft)
Note: Follow through from parts (a) and (b) irrespective of working seen, but only if both values are positive integers.
Award (M1)(AO) for a reasonable attempt to solve simultaneous equations algebraically, leading to at least one incorrect or missing value.
(d) $\left|\frac{14270-14970}{14970}\right| \times 100$

Note: Award (M1) for correct substitution into percentage error formula.

$$
\begin{equation*}
=4.68(\%) \quad(4.67601 \ldots) \tag{A1}
\end{equation*}
$$

9. (a) $x=3$
(A1)(A1)
Note: Award (A1) for $x=$ constant, (A1) for the constant being 3. The answer must be an equation.
(b) $\frac{-b}{2(-1)}=3$

Note: Award (M1) for correct substitution into axis of symmetry formula.

OR

$$
\begin{equation*}
b-2 x=0 \tag{M1}
\end{equation*}
$$

Note: Award (M1) for correctly differentiating and equating to zero.
OR

$$
\begin{aligned}
& c+b(-1)-(-1)^{2}=0 \quad \text { (or equivalent) } \\
& c+b(3)-(3)^{2}=16 \text { (or equivalent) }
\end{aligned}
$$

Note: Award (M1) for correct substitution of $(-1,0)$ and $(3,16)$ in the original quadratic function.

$$
\begin{equation*}
(b=) 6 \tag{C2}
\end{equation*}
$$

(A1)(ft)
Note: Follow through from part (a).
(c) $(-\infty, 16] \quad \mathrm{OR}]-\infty, 16]$
(A1)(A1)
Note: Award (A1) for two correct interval endpoints, (A1) for left endpoint excluded and right endpoint included.
10. (a) $48=64 r$

Note: Award (M1) for correct substitution into geometric sequence formula.
$=0.75\left(\frac{3}{4}, \frac{48}{64}\right)$
(A1)
(C2)
(b) $64 \times(0.75)^{7}$

Note: Award (M1) for correct substitution into geometric sequence formula or list of eight values using their r. Follow through from part (a), only if answer is positive.
$=8.54(\mathrm{~cm}) \quad(8.54296 \ldots \mathrm{~cm})$
(A1)(ft)
(c) \quad depth $=\frac{64\left(1-(0.75)^{10}\right)}{1-0.75}$

Note: Award (M1) for correct substitution into geometric series formula. Follow through from part (a), only if answer is positive.
11. (a) $\tan 48^{\circ}=\frac{\mathrm{CD}}{250}$

Note: Award (M1) for correct substitution into the tangent ratio.

$$
(\mathrm{CD}=) 278(\mathrm{~m}) \quad(277.653 \ldots)
$$

(A1)
(C2)
(b) $\tan \mathrm{ABC}$ (or equivalent) $=\frac{\frac{4}{3} \times 277.653 \ldots}{250}$

Note: Award (M1) for $\frac{4}{3}$ multiplying their part (a), (M1) for substitution into the tangent ratio, (M1) for correct substitution.

OR

$90-\tan ^{-1}\left(\frac{250}{\frac{4}{3} \times 277.653 \ldots}\right)$
Note: Award (M1) for $\frac{4}{3}$ multiplying their part (a), (M1) for substitution into the tangent ratio, (M1) for subtracting from 90 and for correct substitution.

$$
\begin{equation*}
\text { (angle of depression }=\text {) } 56.0^{\circ} \quad(55.9687 \ldots) \quad \text { (A1)(ft) } \tag{C4}
\end{equation*}
$$

Note: Follow through from part (a).
12. (a)

(A1)(A1)
(C2)
Note: Award (A1) for each correct pair of probabilities.
(b) $\frac{4}{5} p+\frac{1}{5} \times \frac{1}{4}=\frac{3}{5}$
(A1)(ft)(M1)(M1)
Note: Award (A1)(ft) for two correct products from part (a), (M1) for adding their products, (M1) for equating the sum of any two probabilities to $\frac{3}{5}$.

$$
(p=) \frac{11}{16}(0.688,0.6875)
$$

(C4)

Note: Award the final (A1)(ft) only if $0 \leq p \leq 1$. Follow through from part (a).
13. (a) $1064+(5-1) \times 37$
(M1)(A1)
Note: Award (M1) for substituted arithmetic sequence formula, (A1) for correct substitution.
$=1212$
(b) $2014>1064+(n-1) \times 37$

Note: Award (M1) for a correct substitution into arithmetic sequence formula. Accept an equation.
($n<$) 26.6756...
26 (times)
(A1)
Note: Award the final (A1) for the correct rounding down of their unrounded answer.

OR
$2014>1064+37 t$
Note: Award (M1) for a correct substitution into a linear model (where $t=n-1$). Accept an equation or weak inequality.
Accept $\frac{2014-1064}{37}$ for (M1).
($t<$) 25.6756...
26 (times)
(A1)
Note: Award the final (A1) for adding 1 to the correct rounding down of their unrounded answer.
14. (a) $2 x^{3}-3 x$
(A1)(A1)
Note: Award (A1) for $2 x^{3}$, award (A1) for $-3 x$.
Award at most (A1)(A0) if there are any extra terms.
(b) $2 x^{3}-3 x=-10$

Note: Award (M1) for equating their answer to part (a) to -10 .

$$
x=-2
$$

(A1)(ft)
Note: Follow through from part (a). Award (MO)(AO) for -2 seen without working.

$$
\begin{equation*}
y=\frac{1}{2}(-2)^{4}-\frac{3}{2}(-2)^{2}+7 \tag{M1}
\end{equation*}
$$

Note: Award (M1) substituting their -2 into the original function.

$$
\begin{equation*}
y=9 \tag{A1}
\end{equation*}
$$

Note: Accept $(-2,9)$.
15. (a) $12870-k(1.1)^{0}$

Note: Award (M1) for correct substitution into $V(t)$.

$$
\begin{equation*}
=12870-k \tag{A1}
\end{equation*}
$$

(C2)
Note: Accept 12870-3080 OR 9790 for a final answer.
(b) $\quad 9143.20=12870-k(1.1)^{2}$

Note: Award (M1) for correct substitution into $V(t)$.

$$
(k=) 3080
$$

(c) $12870-3080(1.1)^{n}=0$

Note: Award (M1) for correct substitution into $V(t)$.

OR

Note: Award (M1) for a correctly shaped curve with some indication of scale on the vertical axis.

$$
(n=) 15.0 \quad(15.0033 \ldots)
$$

(A1)(ft)
Note: Follow through from part (b).

